$\begin{array}{l} \mbox{Precision measurements of inclusive hadron production} \\ \mbox{in p+p$ and p+C$ interactions at the CERN SPS} \end{array}$

Martin Makariev

Institute for Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences

EPS HEP 2013, July 18-24, Stockholm

Introduction

- Data obtained with NA49 experiment
- \bullet Beam momentum 158 GeV/c
- Hadron-proton interactions
 - → p + p
 - n + p
 - $\pi^{\pm} + p$
- Padron-nucleus interactions
 - d + p
 - → p + C
 - p + Pb (with controlled centrality)
 - $\pi^{\pm} + \mathsf{Pb}$
- Nucleus-nucleus interactions
 - Pb+Pb

- Precision data in variety of reactions, syst. <3%
- Maximum phase space coverage
- Detailed comparison with existing measurements
- Model independent analysis and interpretation of the data

Outline

Proton production

- $\bullet\,$ Inclusive proton distributions in p+p and p+C collisions
- Proton and neutron p_T integrated distributions
- Two (Three) component mechanism
- Experimental extraction of the components
- Kaon production
 - $\bullet\,$ Inclusive kaon distributions in p+p and p+C collisions
 - $\bullet\,$ Kaon distribution ratio between p+C and p+p collisions
 - K^+/K^- ratio
 - ${\rm K}^+/\pi^+$ ratio

Proton distributions in p+p collisions

Eur. Phys. J. C65 (2010) 9-63

• Used variables:

•
$$x_F = 2p_L^*/\sqrt{s}$$

transverse

momentum – p_T

•
$$x_F = 0 \div 0.95$$
 and $p_T = 0 \div 1.9$ GeV/c

Proton distributions in p+C collisions

Eur. Phys. J. C73 (2013) 2364

- Data from Fermilab at 400 GeV/c beam momentum Phys. Rev. C20, 764 (1979)
- *s*-dependence is negligible
- Measurement from $x_F = -2$ to $x_F = 1$
- No indication of diffractive structure close to x_F = -1
- Maximum of the distributions is at x_F = -0.92

EPS HEP 2013 5 / 16

Proton and neutron p_T integrated distributions

M. Makariev (INRNE, BAS)

NA49 experiment

EPS HEP 2013 6 / 16

Net proton overlap function

- Net baryons = baryons pair produced baryons
- Pair produced baryons are extracted from measured antiprotons taking into account the isospin effect
- Study of net proton overlap function between target and projectile fragmentation by fixing the baryon number
- Proton is fixed at large $|x_F|$, excluding pair produced protons:
 - projectile hemisphere: $0.35 < x_F < 0.5$
 - target hemisphere: $-0.75 < x_F < -0.6$
- Overlap range is $|x_F| < 0.2$

Net proton overlap function

• The same overlap range in p+C $|x_F| < 0.2$

Target and projectile component of protons in $p\!+\!C$

- Target component predicted from p+p collisions
- Isoscalar nucleus average between protons and neutrons, multiplied by $\langle\nu\rangle=1.6$

- Shift in $x_F \sim 0.1$
- Verifies baryon number conservation
- Below $x_F = -0.2$ onset of nuclear component

Two/three component mechanism

- Projectile fragmentation
- Target fragmentation

- Projectile fragmentation
- Target fragmentation (no diffractive peak)
- Nuclear cascading

Kaon distributions in p+p collisions

Eur. Phys. J. C68 (2010) 1-73

•
$$x_F = 0 \div 0.4$$
 and
 $p_T = 0 \div 1.7$ GeV/c
for K⁺

•
$$x_F = 0 \div 0.5$$
 and
 $p_T = 0 \div 1.7$ GeV/c
for K⁻

M. Makariev (INRNE, BAS)

EPS HEP 2013 10 / 16

•
$$x_F = -0.4 \div 0.4$$
 and
 $p_T = 0 \div 1.5 \text{ GeV/c}$
for K⁺

• $x_F = -0.375 \div 0.4$ and $p_T = 0 \div 1.5 \text{ GeV/c}$ for K⁻

- Target pile-up mean number of collisions, $x_F < -0.1$
- Overlap function, $|x_F| < 0.1$
- Kaon enhancement, $0.1 < x_F < 0.2$
- Kaon transfer towards center ("stopping"), x_F > 0.2

${\rm K}^+/{\rm K}^-$ ratio in p+p collisions

- Extension of *x_F* scale using other data:
 - from Fermilab
 Phys. Rev. D17, 1292 (1978)
 Phys. Rev. D26, 1497 (1982)
 - from ISR Nucl. Phys. B56, 333, (1973)
- π^+/π^- ratio in p+p from NA49 Eur. Phys. J. C45, 343 (2006)

K^+/K^- ratio in p+A collisions

 K⁺/K⁻ ratio is similar in p+p and p+C collisions, while K⁺ and K⁻ change

K^+/K^- ratio in p+A collisions

- K⁺/K⁻ ratio is similar in p+p and p+C collisions, while K⁺ and K⁻ change
- π⁺/π⁻ ratio in similar in p+p and p+C in the forward hemisphere
- π⁺/π⁻ ratio in different in p+p and p+C in the nucleus hemisphere due to the isospin symmetry

- π^+/π^- ratio in p+p from NA49 Eur. Phys. J. C45, 343 (2006) • π^+/π^- ratio in p+C from NA49 Eur. Phys. J. C49, 897 (2007)
- [1] Eur. Phys. J. C73 (2013) 2329

${\rm K}^+/{\rm K}^-$ ratio in p+A collisions

- π^+/π^- ratio in p+p from NA49 Eur. Phys. J. C45, 343 (2006)
- π^+/π^- ratio in p+C from NA49 Eur. Phys. J. C49, 897 (2007)
- [1] Eur. Phys. J. C73 (2013) 2329
- Fermilab p+Ta Phys. Rev. C22, 700 (1980)

M. Makariev (INRNE, BAS)

- K⁺/K⁻ ratio is similar in p+p and p+C collisions, while K⁺ and K⁻ change
- π⁺/π⁻ ratio in similar in p+p and p+C in the forward hemisphere
- π^+/π^- ratio in different in p+p and p+C in the nucleus hemisphere due to the isospin symmetry
- K⁺/K⁻ ratio is similar also in p+Ta collisions in the nucleus hemisphere
- π⁺/π⁻ in the backward is about 1 for p+A

EPS HEP 2013 14 / 16

K^+/π^+ ratio in p+A collisions

- Increase of K^+/π^+ ratio in p+C collisions with respect to p+p collisions
- In the backward region is due to the isospin effect
- In the forward region is due to the kaon enhancement of 28% compared to pion enhancement of 10%
- There is a strangeness enhancement already in p+C collisions

Conclusions

- Precise measurement, with wide acceptance coverage, of inclusive cross sections of baryon and kaon in p+p and p+C collisions is performed with the same detector at 158 GeV/c beam momentum
- Extraction in a model independent way the two (three) components of hadronization process
- $\bullet~K^+/K^-$ ratios are similar in p+p and p+C collisions
- Different behaviour of ${\rm K}^+/{\rm K}^-$ and π^+/π^- ratios in the nucleus hemisphere due to the isospin symmetry
- Increase of K⁺/ π^+ ratio in p+C collisions with respect to p+p collisions in the nucleus hemisphere is due to the isospin effect