Precision measurements of inclusive hadron production in $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{C}$ interactions at the CERN SPS

Martin Makariev
Institute for Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences

EPS HEP 2013, July 18-24, Stockholm

Introduction

- Data obtained with NA49 experiment
- Beam momentum $158 \mathrm{GeV} / \mathrm{c}$
(1) Hadron-proton interactions

$$
\begin{aligned}
\rightarrow & p+p \\
& n+p \\
\bullet & \pi^{ \pm}+p
\end{aligned}
$$

(2) Hadron-nucleus interactions

- d + p
$\rightarrow \mathrm{p}+\mathrm{C}$
- $\mathrm{p}+\mathrm{Pb}$ (with controlled centrality)
- $\pi^{ \pm}+\mathrm{Pb}$
- Precision data in variety of reactions, syst. $<3 \%$
- Maximum phase space coverage
- Detailed comparison with existing measurements
- Model independent analysis and interpretation of the data
(3) Nucleus-nucleus interactions
- $\mathrm{Pb}+\mathrm{Pb}$

Outline

(1) Proton production

- Inclusive proton distributions in $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{C}$ collisions
- Proton and neutron p_{T} integrated distributions
- Two (Three) component mechanism
- Experimental extraction of the components
(2) Kaon production
- Inclusive kaon distributions in $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{C}$ collisions
- Kaon distribution ratio between $\mathrm{p}+\mathrm{C}$ and $\mathrm{p}+\mathrm{p}$ collisions
- $\mathrm{K}^{+} / \mathrm{K}^{-}$ratio
- K^{+} / π^{+}ratio

Proton distributions in $\mathrm{p}+\mathrm{p}$ collisions

Eur. Phys. J. C65 (2010) 9-63

- Used variables:
- $x_{F}=2 p_{L}^{*} / \sqrt{s}$
- transverse momentum - p_{T}
- $x_{F}=0 \div 0.95$ and
$p_{T}=0 \div 1.9 \mathrm{GeV} / \mathrm{c}$

Proton distributions in $\mathrm{p}+\mathrm{C}$ collisions

Eur. Phys. J. C73 (2013) 2364

- Data from Fermilab at $400 \mathrm{GeV} / \mathrm{c}$ beam momentum Phys. Rev. C20, 764 (1979)
- s-dependence is negligible
- Measurement from $x_{F}=-2$ to $x_{F}=1$
- No indication of diffractive structure close to $x_{F}=-1$
- Maximum of the distributions is at $x_{F}=-0.92$

Proton and neutron p_{T} integrated distributions

Net proton overlap function

- Net baryons = baryons - pair produced baryons
- Pair produced baryons are extracted from measured antiprotons taking into account the isospin effect
- Study of net proton overlap function between target and projectile fragmentation by fixing the baryon number
- Proton is fixed at large $\left|x_{F}\right|$, excluding pair produced protons:
- projectile hemisphere: $0.35<x_{F}<0.5$
- target hemisphere: $-0.75<x_{F}<-0.6$
- Overlap range is $\left|x_{F}\right|<0.2$

Net proton overlap function

- The same overlap range in $\mathrm{p}+\mathrm{C}$ $\left|x_{F}\right|<0.2$

Target and projectile component of protons in $\mathrm{p}+\mathrm{C}$

- Target component predicted from $\mathrm{p}+\mathrm{p}$ collisions
- Isoscalar nucleus - average between protons and neutrons, multiplied by $\langle\nu\rangle=1.6$

Projectile fragmentation

- Shift in $x_{F} \sim 0.1$
- Verifies baryon number conservation
- Below $x_{F}=-0.2$ onset of nuclear component

Two/three component mechanism

- Projectile fragmentation
- Projectile fragmentation
- Target fragmentation
- Target fragmentation (no diffractive peak)
- Nuclear cascading

Kaon distributions in $\mathrm{p}+\mathrm{p}$ collisions

Eur. Phys. J. C68 (2010) 1-73

- $x_{F}=0 \div 0.4$ and
$p_{T}=0 \div 1.7 \mathrm{GeV} / \mathrm{c}$ for K^{+}
- $x_{F}=0 \div 0.5$ and
$p_{T}=0 \div 1.7 \mathrm{GeV} / \mathrm{c}$ for K^{-}

Kaon distributions in $\mathrm{p}+\mathrm{C}$ collisions

- $x_{F}=-0.4 \div 0.4$ and $p_{T}=0 \div 1.5 \mathrm{GeV} / \mathrm{c}$ for K^{+}
- $x_{F}=-0.375 \div 0.4$ and $p_{T}=0 \div 1.5 \mathrm{GeV} / \mathrm{c}$ for K^{-}

Kaon ratio $p+C$ to $p+p$ collisions

- Target pile-up - mean number of collisions, $x_{F}<-0.1$
- Overlap function, $\left|x_{F}\right|<0.1$
- Kaon enhancement, $0.1<x_{F}<0.2$
- Kaon transfer towards center ("stopping"), $x_{F}>0.2$

$\mathrm{K}^{+} / \mathrm{K}^{-}$ratio in $\mathrm{p}+\mathrm{p}$ collisions

- Extension of x_{F} scale using other data:
- from Fermilab Phys. Rev. D17, 1292 (1978)

Phys. Rev. D26, 1497 (1982)

- from ISR

Nucl. Phys. B56, 333, (1973)

- π^{+} / π^{-}ratio in $\mathrm{p}+\mathrm{p}$ from NA49
Eur. Phys. J. C45, 343 (2006)

$\mathrm{K}^{+} / \mathrm{K}^{-}$ratio in $\mathrm{p}+\mathrm{A}$ collisions

- $\mathrm{K}^{+} / \mathrm{K}^{-}$ratio is similar in $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{C}$ collisions, while K^{+}and K^{-}change

$\mathrm{K}^{+} / \mathrm{K}^{-}$ratio in $\mathrm{p}+\mathrm{A}$ collisions

- $\mathrm{K}^{+} / \mathrm{K}^{-}$ratio is similar in $p+p$ and $p+C$ collisions, while K^{+}and K^{-}change
- π^{+} / π^{-}ratio in similar in $p+p$ and $p+C$ in the forward hemisphere
- π^{+} / π^{-}ratio in different in $p+p$ and $p+C$ in the nucleus hemisphere due to the isospin symmetry
- π^{+} / π^{-}ratio in $p+p$ from NA49 Eur. Phys. J. C45, 343 (2006)
- π^{+} / π^{-}ratio in $p+C$ from NA49 Eur. Phys. J. C49, 897 (2007)
- [1] - Eur. Phys. J. C73 (2013) 2329

$\mathrm{K}^{+} / \mathrm{K}^{-}$ratio in $\mathrm{p}+\mathrm{A}$ collisions

- π^{+} / π^{-}ratio in $p+p$ from NA49 Eur. Phys. J. C45, 343 (2006)
- π^{+} / π^{-}ratio in $p+C$ from NA49 Eur. Phys. J. C49, 897 (2007)
- [1] - Eur. Phys. J. C73 (2013) 2329
- Fermilab p+Ta Phys. Rev. C22, 700 (1980)
- $\mathrm{K}^{+} / \mathrm{K}^{-}$ratio is similar in $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{C}$ collisions, while K^{+}and K^{-}change
- π^{+} / π^{-}ratio in similar in $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{C}$ in the forward hemisphere
- π^{+} / π^{-}ratio in different in $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{C}$ in the nucleus hemisphere due to the isospin symmetry
- $\mathrm{K}^{+} / \mathrm{K}^{-}$ratio is similar also in $\mathrm{p}+$ Ta collisions in the nucleus hemisphere
- π^{+} / π^{-}in the backward is about 1 for $\mathrm{p}+\mathrm{A}$

K^{+} / π^{+}ratio in $\mathrm{p}+\mathrm{A}$ collisions

- Increase of K^{+} / π^{+} ratio in $\mathrm{p}+\mathrm{C}$ collisions with respect to $p+p$ collisions
- In the backward region is due to the isospin effect
- In the forward region is due to the kaon enhancement of 28% compared to pion enhancement of 10%
- There is a strangeness enhancement already in $\mathrm{p}+\mathrm{C}$ collisions

Conclusions

- Precise measurement, with wide acceptance coverage, of inclusive cross sections of baryon and kaon in $p+p$ and $p+C$ collisions is performed with the same detector at $158 \mathrm{GeV} / \mathrm{c}$ beam momentum
- Extraction in a model independent way the two (three) components of hadronization process
- $\mathrm{K}^{+} / \mathrm{K}^{-}$ratios are similar in $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{C}$ collisions
- Different behaviour of $\mathrm{K}^{+} / \mathrm{K}^{-}$and π^{+} / π^{-}ratios in the nucleus hemisphere due to the isospin symmetry
- Increase of K^{+} / π^{+}ratio in $\mathrm{p}+\mathrm{C}$ collisions with respect to $\mathrm{p}+\mathrm{p}$ collisions in the nucleus hemisphere is due to the isospin effect

