A study of baryon production in single and multiple hadronic collisions

Martin Makariev

Institute for Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences

June 24-28, 2013, Glasgow

Introduction

- Data obtained with NA49 experiment
- \bullet Beam momentum 158 GeV/c
- Hadron-proton interactions
 - → p + p
 - n + p
 - $\pi^{\pm} + p$
- Padron-nucleus interactions
 - d + p
 - → p + C
 - p + Pb (with controlled centrality)
 - $\pi^{\pm} + \mathsf{Pb}$
- Nucleus-nucleus interactions
 - Pb+Pb

- Precision data in variety of reactions, syst. <3%
- Maximum phase space coverage
- Detailed comparison with existing measurements
- Model independent analysis and interpretation of the data

Outline

- Single hadronic collisions p+p collisions
 - Inclusive proton and antiproton distributions
 - Proton and neutron p_T integrated distributions
 - Net baryon distribution
 - Two component mechanism
 - Resonance decay baryon number transfer
 - Charge-exchange and non-charge-exchange processes
- 2 Multiple hadronic collisions p+C collisions with $\langle \nu \rangle = 1.6$
 - Inclusive proton and antiproton distributions
 - Proton and neutron p_T integrated distributions
 - Baryon number transfer
 - Three component mechanism
 - $\bullet\,$ Prediction of the target component from p+p collisions
 - Extraction of the nuclear cascading

Single collisions

Protons and anti-protons in p+p collisions

•
$$x_F = 2p_L^* / \sqrt{s}$$

• transverse

momentum – p_T

•
$$x_F = 0 \div 0.95$$
 and
 $p_T = 0 \div 1.9 \text{ GeV/c}$
for p

•
$$x_F = 0 \div 0.4$$
 and
 $p_T = 0 \div 1.5$ GeV/c
for \overline{p}

Protons and neutrons in p+p collisions: p_T integrated

• Neutron coverage: $x_F = 0.1 \div 0.95$, p_T integrated

Net protons and net neutrons in p+p collisions

- Net baryons = baryons pair produced baryons
- Pair produced baryons are extracted from measured antiprotons taking into account the isospin effect

- Two components
 - Projectile fragmentation
 - Target fragmentation
- Overlap between projectile and target components

Net proton overlap function

- Study of net proton overlap function between target and projectile fragmentation by fixing the baryon number
- Proton is fixed at large |x_F|, excluding pair produced protons:
 - projectile hemisphere: $0.35 < x_F < 0.5$
 - target hemisphere: -0.75 $< x_F < -0.6$
- Overlap range is $|x_F| < 0.2$

Net proton overlap function

- Baryon number transfer from projectile (target) to central region
- Mean transfer of about 0.55 units of x_F

Proton produced from Δ decays

- Resonance decay is very efficient in baryon number transfer
- Most if not all of the final state baryon are produced from resonance decay
- Δ^{++} example baryon number transfer is more than 0.1 in x_F

- For $|x_F| < 0.6$ the shape of the decay protons from Δ^{++} reproduces the inclusive proton distribution multiplied by factor of 0.27
- Δ⁺ and Δ⁰ increase proton production to about 40%

Proton produced from Δ decays

- The difference between decay and inclusive distribution is well described by 1/M_x²
- Single diffraction $M_x^2 \sim s(1 - x_F)$ (dashed red line)

Charge exchange vs non-charge exchange

- 40% of all non-diffractive protons come from Δ decay
- Absence of charge and flavour exchange at SPS energies
- \bullet No direct Δ production because there is no charge-exchange at SPS energy

Charge exchange

• Elastic charge exchange scattering

 $\mathbf{n} + \mathbf{p} \to \mathbf{p} + \mathbf{n}$

Single dissociation

 $\mathbf{p} + \mathbf{p} \rightarrow \mathbf{n} + \mathbf{\Delta}^{++} \rightarrow \mathbf{n} + (\mathbf{p} + \pi^+)$

Double dissociation

 $\mathbf{p} + \mathbf{p} \rightarrow (\mathbf{p} + \pi^{-}) + (\mathbf{p} + \pi^{+})$

Non-charge exchange

Elastic scattering

 $\mathbf{p} + \mathbf{p} \rightarrow \mathbf{p} + \mathbf{p}$

- Single dissociation
 - $\mathbf{p} + \mathbf{p} \rightarrow \mathbf{p} + (\mathbf{p} + \pi^+ + \pi^-)$
- Double dissociation

 $\mathbf{p} + \mathbf{p} \rightarrow (\mathbf{p} + \pi^+ + \pi^-) + (\mathbf{p} + \pi^+ + \pi^-)$

Charge exchange

Non-charge exchange

Double and single dissociation from ISR

- Double and single dissociation from ISR at $\sqrt{s}=53~{\rm GeV}$
- $\Delta^{++}\pi^-$ channel is fully contained in $p\pi^+\pi^-$
- All Δ comes from N* decay

Multiple collisions

 $\bullet\,$ Mean number of projectile interactions $\langle\nu\rangle$ inside the nucleus in p+A collisions

• p+C -
$$\langle \nu \rangle = 1.6$$

• p+Pb -
$$\langle \nu \rangle = 3.7$$

Protons and anti-protons in p+C collisions

Protons and anti-protons in p+C collisions

- Data from Fermilab at 400 GeV/c beam momentum
- *s*-dependence is negligible
- Measurement from $x_F = -2$ to $x_F = 1$
- No indication of diffractive structure close to x_F = -1
- Maximum of the distributions is at

$$x_F = -0.92$$

- Proton distribution from $x_F = -2$ to $x_F = +1$
- Neutron distribution only in the forward hemisphere

Baryon transfer ("stopping")

• Baryon transfer is equal for protons and neutrons

Three components in p+C interactions

- Net protons
- The three components
 - Projectile fragmentation
 - Target fragmentation
 - Nuclear cascading

Target and projectile component of protons in $p\!+\!C$

- Target component predicted from p+p collisions
- Isoscalar nucleus average between protons and neutrons, multiplied by $\langle\nu\rangle=1.6$

Projectile fragmentation

- Shift in $x_F \sim 0.1$
- Verifies baryon number conservation
- Below $x_F = -0.2$ onset of nuclear component

• Subtraction of the predicted target component from total

- Subtraction of the predicted target component from total
- No diffractive peak at target hemisphere due to the quasi-elastic scattering in the nucleus

- Subtraction of the predicted target component from total
- No diffractive peak at target hemisphere due to the quasi-elastic scattering in the nucleus
- Nuclear component described by Gaussian with:
 - $\sigma \sim 0.26$ units of x_F
 - centered at $x_F \sim -0.92$

- Subtraction of the predicted target component from total
- No diffractive peak at target hemisphere due to the quasi-elastic scattering in the nucleus
- Nuclear component described by Gaussian with:
 - $\sigma \sim 0.26$ units of x_F
 - centered at $x_F \sim$ -0.92
- Modified target component reaches x_F = -1.2

- Precise measurement, with wide acceptance coverage, of inclusive cross sections of baryons in single and multiple collisions is performed with the same detector at 158 GeV/c beam momentum
- Extraction in a model independent way the two (three) components of hadronization in single (multiple) collisions
- Most if not all the final state baryons come from resonance decay. The resonance decay is very effective way of transferring the baryon number towards the central region